
RC24117 (W0611-164) November 28, 2006
Electrical Engineering

IBM Research Report

Experience of Developing and Implementing a
Light-Weight Enterprise Grid

Colm Malone, Alex Zlatsin
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Nianjun Zhou
IBM Managed Business Process Services

294 Route 100
Somers, NY 10589

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Experience of Developing and Implementing a Light-Weight Enterprise Grid

Colm Malone (*)

colm@us.ibm.com

Alex Zlatsin (*)

zlatsin@us.ibm.com

Nianjun Zhou (+)

jzhou@us.ibm.com

(*) IBM T. J. Watson Research Center

PO .Box 218

 Yorktown Heights, NY 10598, US

(+) IBM Managed Business Process Services

Abstract

In this paper we present our light-weight grid

solution which overcomes many of the more

common inhibitors associated with “gridifying”

enterprise-type applications. The motivation

behind creating a light-weighted grid solution

includes: simplified middleware components

with a small foot-print and thus easier

maintenance of individual resources.

Java-based middleware solutions like Globus®,

can be quite heavyweight to install and even

more cumbersome to maintain. With our goal of

being a light-weight solution and also our desire

to target non-dedicated type resources, our

middleware layer needed to be as thin as

possible.

Our grid solution is a prototype deployed over a

geographic distributed world-wide grid system

using z/Linux instances hosted under an S/390

mainframe, p-series AIX and x-series Linux

workstations.

1. Introduction:

Grid computing is defined as flexible, secure,

coordinated resource sharing among a dynamic

collection of individuals, institutions, and

resources. The sharing of these resources must

be tightly controlled, with resource providers and

consumers defining clearly and carefully just

what is shared, who is allowed to share, and the

conditions under which sharing occurs.

Therefore, Grid computing presents unique

authentication, authorization, resource access,

resource discovery, and resource management

challenges.

With complicated heterogeneous computing

environments and heavy-weight grid middleware

implementations, system architects are often

frustrated by the deployment hurdles involved

with adopting a grid solution. Certain grid

middleware implementations require manual

installation, or a high level of maintenance for

each individual resource. Other grid middleware

solutions require resources to be dedicated –

which excludes non-dedicated type resources

like user workstations.

Our goal is to target any potential resource as

being a grid resource incurring as minimal a

footprint as possible.

Enabling applications to run on individual grid

resource can be a challenge too. Many solutions

require administrator-level privileges on each

resource. In keeping with our goal of minimal

intrusion, we try to run/deploy applications

without administrator-level privileges where

possible.

The main inhibitors we encountered to deploying

applications over the grid were:

1. Abstracting an application to run over the

“grid”. By this we mean, instead of targeting

a specific resource for a specific task, the

application should be able designed to run

from any resource i.e. it should not care

what resource it is running on. We

implemented this by:

a. Installing the software to a sharable

network file-system that is

accessible from all resources. This

avoids installing software to every

resource. By avoiding the use of an

individual resource’s local file

system, we increase the portability

of the application to the grid while

reducing the intrusion on each

individual resource.

b. For synchronous type tasks like

Web Services, we maintained the

status of the application the grid

using a global state file accessible

by any resource. This allows the

service to run from anywhere and

for other resources to take over

should the process fail on the

current resource.

2. The second inhibitor is related to security.

Isolation of application I/O files is needed to

prevent accidental (or malicious) access of

other users to confidential files. This

problem is solved by:

a. Using a project-specific network

file account for storing I/O data

files and the requisite software.

Credentials delegation to the

appropriate local IDs is provided

by the Grid Scheduler on “as

needed” basis to the relevant grid

resources;

b. Secure Shell (SSH) authentication

is the mechanism used for remote

job submission of grid applications.

Public/private key pairs are used.

Public keys being deployed to the

appropriate project accounts on

each resource. Private keys are

secured for each project and are

only accessible to the relevant

project owner.

The third inhibitor is the virtualization of

synchronous applications such as web services.

Application URI addresses need to be abstracted

from the actual hosting grid resource. With the

use of a dynamic hostname, dynamic DNS can

reassign the hostname that happens to be running

the grid application at scheduling-time.

2. Grid infrastructure Overview
The following figure provides an overview of the

existing infrastructure, breaking it down into

four broadly grouped components that will be

outlined in the next four sections. These four

components are entirely custom and specific to

light-weight enterprise grid infrastructure, but

are built using commonly available software.

Figure 1. High Level Overview of the Light-Weight Grid Infrastructure

Grid Management Center

• Resource Registration

• Project Registration

Virtual Software Storage

•Software and I/O files storage

• Create File access control

Grid Resource Controller

•Securing and partitioning projects

•Monitoring/accounting

Grid Services

•Scheduling

•Load Balancing

Runs applications off

Manages applications

on

Applications and

resources registered at

Runs locally on

The function of the four components are:

• Grid Management Center: provides

resource registration and

application/project registration, to link

project and resources, and to handle Job

submission and link project, resource

and data storage together.

• Virtual File System: is a network-file

system to securely store grid application

code and data. It allows for single

installation of applications with the

potential for network optimization via

geographical resource pooling;

• Grid Resource Controller: secures and

partitions projects. It also performs

monitoring and accounting tasks;

• Grid services – provides scheduling and

load balancing.

2.1 Grid Management Center

The Grid Management Center is at the center of

Grid control. The user interface for the Grid

Management Center is a Web application,

currently running on WebSphere Application

Server version 6. It comprises of an Enterprise

Java Bean (EJB) to access the DB/2 database

backend, Java Servlets and JSP to provide the

GUI for the grid users.

 The key concepts of the Grid Management

Center are:

• Project: this consists of an application

and a group of users that manage it on

the administration site. It also

constitutes a unique user ID on all

resource machines, matching SSH keys,

and a coordinated directory on the

Virtual File System.

• Project Member - A project member has

access to read-only information about

the project, including: status,

description, and SSH keys for resource

access.

• Resource Pool - A resource pool is a

logical group of resources that have

been manually defined by some

common relationship. For instance,

resource pools may be created for a

particular geographical region.

• Grid map file - This file is “borrowed”

extension of the [4] Globus Toolkit

grid-mapfile. The grid map file

associates an application/project

identity to a physical local user ID, for

the purpose of job execution. The grid

map file also includes Virtual file-

system account and auditing

information.

• User ID (UID) - for consistency across

grid resources and an account code ID

for tracking and/or billing purposes.

• Message broker: tracks changes to the

grid map file and ensures these changes

are propagated to each grid resource.

The following diagram represents the

interactions of all these systems as newly created

projects and their related user accounts propagate

throughout the grid system.

Figure 2 Process of Project Creation and Security Control of Projects with Resources

2.2 Virtual File System

In this light-weight grid implementation, the [2]

IBM Global Storage Architecture (GSA) is used

as the virtual file system. GSA maintains an

LDAP (Lightweight Directory Access Protocol)

directory of user IDs and passwords. Clients

securely authenticate with their user ID and

password directly to the GSA server. This in turn

opens up NFS file sharing access to the client’s

current IP address and UID (numeric User ID)

for a specified amount of time. With GSA’s NFS

authentication, the access controls are stored on

the server, instead of storing a token locally on

the client. More importantly, with GSA’s

authentication, the client can obtain credentials

for not only its own IP address/UID but can also

delegate credentials to a collection of other IP

addresses/UID’s without having to contact those

resources directly. This allows the grid scheduler

to delegate credential access to the requisite

software and data before scheduling the job. IP

address based authentication does have some

security disadvantages however. IP spoofing—

which is easy and prevalent on the internet—can

lead to an unauthorized resource gaining access

to private data. Within a managed enterprise

network, however, switched-routing prevents

problems like IP spoofing.

Figure 3 Process of running an application of a project in grid environment

2.3 Grid Resource Controller

The Grid Resource Controller consists of scripts

and daemons to register, maintain and monitor

each individual Grid Resource. The Grid

Resource Controller consists of:

• A process to register a Grid Resource

with the Grid Management Center

• Grid Project ID synchronization with

the Grid Management Center

• Grid Resource meta-data monitoring &

reporting to the Grid Management

Center

• Secure Remote Access to Grid

Resources

• Grid Services Daemon

Figure 4. Grid services daemon control flow

2.4 Grid services

The grid services component is responsible for

providing job scheduling and IP virtualization

2.4.1 Job Scheduling

The main purpose of Grid scheduler is to control

an application. The application can be executed

by a user multiple times. In some situations, you

may want to run just one instance of an

application to avoid data contention and to

improve performance. In other situations, you

may want to run multiple instances of an

application when availability and reliability is

important. Some application tasks run

sequentially, some in parallel. In the case of

multiple instances of an application, the number

of concurrent application instances needs to be

limited due to resource constraints.

A serial application can run asynchronously to

achieve faster execution. In contrast parallel or

bidirectional applications often require

coordinated synchronization. Some applications

can be restricted to particular geographical

locations, while others can run anywhere.

We chose the [3] IBM LoadLeveler as our grid

scheduler. Load-balancing is based on a

resource’s individual capabilities as well as

pooling resources that are geographically

proximate.

2.4.2 IP Virtualization

Hosting dedicated services on the grid should be

transparent to the application owner. To achieve

this, the individual resource(s) hosting the

service needs to be abstracted from the actual

service address (URI). This is a common

problem with services in general. Dynamic DNS

can be utilized to abstract the resource hostname

from the service’s URI address. The basic

process is as follows:

• The scheduler selects a resource to host

the service

• The grid scheduler sends a dynamic

DNS update for the service address

• The scheduler dispatches the job to the

selected resource

• Requests are automatically routed to the

pertinent grid resource

3. Installing to Virtual File System
The following demonstrates the logistical pitfalls

of installing a software application over a

network file system.

We use Apache/Tomcat as an example of

“gridifying” an application. The process is

summarized as follows:

• Single installation of Tomcat installed

to the virtual file-system.

• The Apache/Tomcat “container”

requires a Java JDK. A JDK must be

accessible for each type of resource

regardless of hardware architecture.

z/Linux resources must have access to a

z/Linux JDK; AIX resources must have

access to a p-series type JDK etc. To

avoid local installations – these

different JDK architectures are installed

into the virtual file-system.

• Create an application container for each

Tomcat cluster group

• Temporary, log, and configuration for

each individual Tomcat “node”. Each

node maps to a specific grid resource

• Tomcat nodes are virtualized by using

dynamic DNS so the underlying grid

resources can be dynamically changed.

Figure 5. Grid application (Tomcat) in virtual file

4. Summary

This light-weight grid solution utilizes basic

open source components to create a thin grid

middleware layer. This simplifies the

configuration and maintenance of individual grid

resources. It also significantly reduces the

footprint on each resource. Also, licensing issues

on individual resources is not an issue with the

use of open-source components.

WebSphere Application Server is used as the

grid portal front-end for users.

A sharable network file-system allows grid

applications to be deployed to all grid resources,

regardless of architecture, all at the same time.

By abstracting where an application runs and

thus allowing it to run from “anywhere” we free

that application to be hosted anywhere on the

grid. Dynamically DNS allows a service URI

address to be static while the underlying hosting

grid resource can change.

Project-specific network file accounts are used to

securely segregate file access between projects.

Credential delegation is used to deliver access to

only the pertinent grid resources and their local

accounts for the particular task at hand.

Secure Shell (SSH) is used for remote job

submission. Authentication is via public/private

key pairs – the public keys being deployed to

each resource and the private keys securely

accessible to only the appropriate application

owners.

IBM LoadLeveler is used as the grid scheduler,

profiling grid resources based on general

capabilities and architecture, as well as pooling

groups of resources into logical groups such as

geographical location.

5. Acknowledgement

The authors would like to express their

appreciation of support from the following

people: Jean-Pierre Prost; Dikran S. Meliksetian;

Soobaek Jang; Joshua M. Woods; and Amarjit

Bahl.

6. References

[1] IBM Redbook, published 14 June 2006 A

Virtualization Experience: IBM Worldwide

Grid Implementation, SG24-7229-00

[2] IBM Redbook: Implementing NFSv4 in the

Enterprise: planning and migration strategies,

SG24-6657

[3] IBM Tivoli Workload Scheduler

LoadLeveler®

[4] The Globus® Toolkit

 http://www.globus.org/toolkit/

[5] IBM RedBook: Workload Management with

LoadLeveler®, SG24-6038-00

